1. Introduction:
Performance in sensory-motor behaviors guides our understanding of many of the key computational functions of the brain, the representation of sensory information, the translation of sensory signals to commands for movement, and the production of behavior. Eye movement behaviors have become a valuable testing ground for theories of neural computation because the neural circuitry has been well characterized and eye movements can be tightly coupled to cortical activity (Osborne et al., 2005). Here we show that smooth pursuit eye movements, and the cortical sensory signals that mediate them, demonstrate the hallmarks of efficient sensory coding. Barlow (1961) argued that neurons should adapt their sensitivity as stimulus changes in order to maintain efficient coding of sensory inputs. Evidence for efficient coding of temporal fluctuations in visual stimulus has been observed in the retina (Ward et al., 2009) and in V1 (Brenner et al., 2001). We asked whether adaptation to stimulus variance generalizes to higher cortical areas and whether such adaptation impacts performance of visually-driven behavior. Specifically, we have studied the impact of dynamic fluctuations in motion direction on the gain of smooth pursuit and found neural correlates of pursuit adaptation in cortical area MT.

2. Experiments:
Barlow’s hypothesis of efficient sensory coding:

Stimulus design:
- Stimulus distributions
- Barlow’s hypothesis of efficient sensory coding

3. Linear analysis: Response gain scales inversely with motion variance for pursuit and MT neurons

4. Gain adaptation to target motion variance:

MT neurons:

Gain index = (gainL + gainH) / (gainL - gainH)

5. Dynamics:

Gain adaptation across motion variance

6. Rescaled input-output relationships:

\[P(n) = \frac{1}{\sum w(n)} \sum w(n) r(n) \]

7. Gain adaptation depends on stimulus not rate:

8. Mutual information:

Mutual information in pursuit behavior and MT neurons

9. Discussion:

Pursuit demonstrates that the brain encodes time-varying motion signals efficiently. Changes in both the linear gain and in the information encoded about target motion are consistent with the system preserving information via gain adaptation. When target motion variance is low, pursuit becomes more sensitive to perturbations and vice versa such that the information encoded about motion remains constant. These results demonstrate a behavioral benefit for efficient sensory coding. Physiology data show that adaptation in MT cortical neurons drives adaptation in pursuit. MT neurons, like pursuit, become less sensitive to target direction fluctuations as motion variance increases, consistent with Barlow’s theory of sensory efficiency. Furthermore, this gain adaptation rescales rapidly after a step change in motion direction variance. We compared the eye direction distribution (or firing rate) in a 20 ms window preceding a step to that immediately following a step. The gain change is already apparent in the first time window after the step as a shift in the eye direction distribution.

Funding:

All work is supported by the National Science Foundation (NSF) under grants 0635831 and 0665313.