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Osborne LC, Lisberger SG. Spatial and temporal integration of
visual motion signals for smooth pursuit eye movements in monkeys.
J Neurophysiol 102: 2013-2025, 2009. First published August 5,
2009;d0i:10.1152/jn.00611.2009. To probe how the brain integrates
visual motion signals to guide behavior, we analyzed the smooth
pursuit eye movements evoked by target motion with a stochastic
component. When each dot of a texture executed an independent
random walk such that speed or direction varied across the spatial
extent of the target, pursuit variance increased as a function of the
variance of visual pattern motion. Noise in either target direction or
speed increased the variance of both eye speed and direction, implying
a common neural noise source for estimating target speed and direc-
tion. Spatial averaging was inefficient for targets with >20 dots.
Together these data suggest that pursuit performance is limited by the
properties of spatial averaging across a noisy population of sensory
neurons rather than across the physical stimulus. When targets exe-
cuted a spatially uniform random walk in time around a central
direction of motion, an optimized linear filter that describes the
transformation of target motion into eye motion accounted for ~50%
of the variance in pursuit. Filters had widths of ~25 ms, much longer
than the impulse response of the eye, and filter shape depended on
both the range and correlation time of motion signals, suggesting that
filters were products of sensory processing. By quantifying the effects
of different levels of stimulus noise on pursuit, we have provided
rigorous constraints for understanding sensory population decoding.
We have shown how temporal and spatial integration of sensory
signals converts noisy population responses into precise motor
responses.

INTRODUCTION

To perceive and respond appropriately to sensory stimuli, our
brains must interpret the activity of large populations of cortical
neurons. In visual motion processing, target direction and speed
are estimated by pooling across the population response in cortical
extrastriate area MT. However, the intrinsic variability of neural
responses poses a problem. To improve the reliability of sensory
estimates, the brain must integrate stimulus information over time,
pool the responses of many neurons, or both.

We have approached the problem of sensory estimation in a
noisy neural environment by evaluating the behavioral re-
sponses generated by a precise sensory-motor system, smooth
pursuit eye movements. In pursuit, the eyes move smoothly to
intercept and track a moving target and minimize the slip of the
target’s image across the retina (Rashbass 1961). To track a
moving target, pursuit must detect the onset of motion and
form an estimate of the target’s direction and speed. Our prior
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work has suggested that trial-by-trial variation in pursuit arises
primarily from errors in estimating the sensory parameters of
target motion, while the motor side of the system follows those
erroneous estimates loyally (Osborne et al. 2005, 2007). The
possible sensory origin to trial-by-trial variation in pursuit adds
to other evidence that the properties of visually guided smooth
eye movements can be direct probes of the features of sensory
processing (e.g., Churchland and Lisberger 2001; Kawano and
Miles 1986; Lisberger and Westbrook 1985; Masson et al.
1997; Osborne et al. 2005, 2007).

Even for the most unambiguous target motion, there is a
fixed level of internal variation that prevents the visual system
from estimating the parameters of visual motion perfectly for
either pursuit or perception. As part of sensory-motor decod-
ing, the nervous system reduces the impact of noise on sensory
estimation by accumulating sensory evidence, both over time
(e.g., Britten et al. 1992, 1996; de Bruyn and Orban 1988; Gold
and Shadlen 2003; Perrett et al. 1998; Snowden and Braddick
1991) and across large populations of neurons (Georgopoulos
et al. 1986; Lee et al. 1988; Treue et al. 2000). It follows that
we might gain insight into the properties of sensory-motor
decoding by adding a temporally or spatially stochastic com-
ponent to visual motion, thereby creating a higher level of
neural variation in sensory representations of motion and
evaluating the effects on variation in pursuit. Given the close
relationship between the precision of pursuit eye movements
and motion perception (Kowler and McKee 1987; Osborne et
al. 2005, 2007; Stone and Krauzlis 2003; Watamaniuk and
Heinen 1999) and the role of MT in both behaviors (Born et al.
2000; Britten et al. 1992, 1996; Groh et al. 1997; Liu and
Newsome 2005; Newsome et al. 1985), knowing how visual
motion signals are integrated to generate pursuit eye move-
ments should yield insight into cortical processing of visual
motion signals for perception as well.

To investigate integration across time and space for popu-
lation decoding and visual motion estimation, we measured
pursuit eye movements in response to target motion with
carefully contrived stochastic components. We created tempo-
ral noise by providing spatially uniform motion that changed
direction or speed at regular temporal intervals: analysis of the
resulting eye movements revealed that pursuit integrates visual
motion signals on a time scale of ~25 ms. We created spatio-
temporal noise by providing patches of dots in which each dot
underwent an independent random walk, again changing direc-
tion or speed at regular temporal intervals (Watamaniuk and
Duchon 1992; Watamaniuk and Heinen 1999; Williams and
Sekuler 1984). By quantifying the effects of different levels of
stimulus noise, we have provided rigorous constraints for
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understanding sensory population decoding. Our results show
how temporal and spatial integration of sensory signals leads to
relatively precise motor behavior.

METHODS

Eye movements were recorded from four male rhesus monkeys that
had been implanted with a head holder and scleral search coils
(Ramachandran and Lisberger 2005) and trained to fixate and track
visual targets. Most experiments were performed on two of the
monkeys (P and J), and their data comprise most of our figures.
Nonetheless, the basic findings were replicated on all four monkeys.
In addition, several of the experiments were performed most com-
pletely on monkeys Y and D, and their data are substituted in the
figures for less complete analyses on monkey J. These instances are
explained in the relevant figure legends. During experiments, mon-
keys sat in a specialized primate chair for 2-3 h with their heads
stabilized through the implanted head holder. They received juice or
water rewards for tracking visual targets accurately. All procedures
had been approved by UCSF’s Institutional Animal Care and Use
Committee and were in compliance with National Institutes of
Health’s Guide for the Care and Use of Laboratory Animals.

Experiments consisted of a series of trials, each delivering a single
stimulus form and motion trajectory. Trials began with the monkey
fixating a stationary spot target at the center of the screen for a random
interval of 700-1,200 ms. Targets then appeared either centrally or
eccentrically 2.5-3.7° from the point of fixation and immediately
began to provide local stimulus motion toward the fixation position.
Formally, the target motions we used comprised a base target velocity
plus a stochastic component of speed or direction. Thus they provided
a stimulus with a fitful, but inexorable, drift in a given direction at a
given speed. While remaining mindful of their formal description, we
will use the shorthand throughout the paper of calling them “noise”
targets with direction or speed noise. The base target speed was 20°/s
in most experiments and 10 or 30°/s in a few. We included several
different base target directions in each experiment. The directions
were typically horizontal and 9° rotated above and below horizontal
(0, 180, 9, 171, 189, and 351°) and included smaller angles (i.e., 0,
+3, £6, and =9°) when the number of task conditions was tractable.
In a few experiments, we collected a limited amount of data at oblique
angles with identical results.

Monkeys were rewarded if they maintained eye position within 2° of
the fixation spot for the final 200 ms of its illumination and within 3-5°
of target center, depending on the form of the target, in the last 400 ms
of pursuit. Rewards were not contingent on the tracking performance
during the time window of our analysis. In all experiments, target
motions were balanced in the two directions along each motion axis,
and trials were presented in random order so that the monkeys could
not anticipate the direction of the upcoming target motion. Datasets
consisted of eye velocity responses to =32 and typically >100
repetitions of each specific target motion.

Signals proportional to vertical and horizontal eye velocity were
generated by passing voltages proportional to eye position through an
analog circuit that differentiated frequencies <25 Hz and rejected
higher frequencies with a roll-off of 20 dB/decade. This circuit
responds to a step of position with a twitch of velocity having a full
width at half-height of 7.5 ms (i.e., the duration of the impulse
response function). To confirm that the temporal filters obtained from
our experiments were properties of the eye movements and not of the
external signal processing, we used a differentiator with a 100-Hz
cutoff frequency and a full-width at half height of 3 ms in a few
experiments. Eye position and velocity signals were sampled and
stored at 1,000 samples/s on each channel.

L. C. OSBORNE AND S. G. LISBERGER

Visual stimuli

We presented bright, high-contrast visual targets in a dimly lit room
against the dark screen of a high-resolution analog display oscillo-
scope that subtended horizontal and vertical visual angles of 48 X 38°.
The oscilloscope was driven by 16-bit D/A converters on a digital
signal processing board. This system allowed nominal spatial resolu-
tion of 2'® pixels along each axis and temporal resolution of 2 ms.
“Patch” targets consisted of typically 50 or 99 bright dots that were
positioned randomly within a 4 X 4 or 7 X 7° square aperture sized
to yield a dot density of ~2-3 dots/deg”. “Spot” targets, including the
fixation target, were provided by a cluster of typically 12 oscilloscope
pixels subtending a 0.4° square. New image frames were painted
every 4 ms in all experiments, but the temporal update interval for
changes in target motion was varied systematically. Thus smooth
motion was ensured by updating the position of a target every 4 ms,
but its direction or speed of motion was altered only every N times 4
ms, where N ranged from 1 to 32 in different experiments. Within
each frame, the computer system painted individual pixels as quickly
as it could, with average inter-pixel intervals of ~10 microsecs.

For temporal noise targets, the stimulus appeared eccentric to the
fixation point at the end of the fixation interval, and the dots and
aperture started to move immediately. Targets moved with a constant
velocity base trajectory to which we added a stochastic perturbation in
either direction or speed so that targets executed a random walk
around the base trajectory. The temporal perturbation affected every
dot in a patch synchronously for the first 432 ms of target motion and
changed the direction or speed of stimulus motion at regular times
defined by the update interval (Fig. 1A). Because the dots in temporal
noise targets underwent coordinated motion, the trajectory of the
pattern was identical to that of the individual dots and underwent
fairly impressive variation from segment to segment. Single spot
targets were essentially patches of only one dot; patch targets had
apertures of 4 X 4° and typically contained 50 dots. The direction or
speed of the motion perturbation for each update of a temporal noise
target was drawn from a Gaussian distribution and then added to the
base horizontal and vertical components of target velocity. For exper-
iments that added a stochastic component to target direction, target
speed was held constant, usually at 20°/s, so that the noise appeared
only in target direction (Fig. 1A, bottom 2 panels). The situation was
reversed for experiments that added a stochastic component to target
speed (not pictured).

For spatiotemporal noise targets, the patches appeared at the center
of the screen when the fixation point was extinguished, and the dots
started to move immediately within a stationary aperture. After ~150
ms, the aperture also began to move. Thus local motion provided the
only stimulus for the first 125 ms of pursuit allowing us to connect our
pursuit results to the literature on human psychophysics using similar
targets. Whenever a dot moved beyond the edge of the aperture, it was
replaced by a fresh dot placed randomly on the opposite edge. Motion
included a stochastic component like that used for temporal noise
targets except that the perturbations were independent for each dot in
the pattern. Our spatiotemporal noise targets are modeled after those
introduced by Williams and Sekuler (1984) and used by Watamaniuk
and Heinen (1999) and others rather than after those of Newsome and
Paré (1988) in which a fraction of dots moved coherently while others
translated randomly. For direction noise, dot directions were chosen
randomly with replacement from a uniform distribution about the
central direction of motion. The spacing between possible dot direc-
tions was always 1°. For speed noise, dot speeds ranged logarithmi-
cally rather than linearly about a central value. The speed of each dot,
S, was chosen at each update step according to S = S,-2"/E, where S,
indicates the mean speed of the target chosen for that trial and x was
a random value drawn from a uniform distribution from —N to N with
a granularity of 0.05; to obtain different ranges of speed noise, N took
on values from 0 (no noise) to 7 in integer steps. E represents the
expected value of 2* given by 2, p(x)2*, where p(x) is the probability
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A Temporal noise targets
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B Spatio-temporal noise targets
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of each value of x. The average value of the individual dot and pattern
speed approached S, after sufficient time steps.

The variance in the overall pattern direction or speed within one
frame of our spatiotemporal noise targets was o3, N Where 03, is the
variance of the distribution of directions or speeds of a single dot and
N is the number of dots in the pattern. Because there were typically a
large number of dots in our patterns, the distribution of pattern
directions or speeds was nearly Gaussian. The range of dot directions
within a target never exceeded =90°, so that dots never moved against
the central direction of motion. The use of a large number of dots
meant that pattern direction had considerably lower variance for the
spatiotemporal noise targets (Fig. 1B) than for the temporal noise
targets (Fig. 14). After 432 ms of motion, the stochastic component of
motion was eliminated, and the patch of dots moved coherently for the
remainder of the trial. For experiments testing the effect of the number
of dots or the size of the target, apertures ranged from 3.2 X 3.2 to 7 X
7° with 10-200 dots. With practice, the monkeys pursued spatiotem-
poral stochastic target motion well. The initial dot motion provided a
strong stimulus for pursuit initiation, and the moving dots and aperture
sustained excellent pursuit.

The range of dot directions within a target affects the speed as well
as the direction of pattern motion. If the speed of individual dots is
held constant, then the projection of each dot’s motion along the
average trajectory of motion becomes smaller as the range of dot
directions increases, and the overall speed of pattern motion falls. At
the extreme, a dot moving at 90° relative to the average direction of
motion makes no contribution to pattern speed and thus reduces the
average speed of the pattern. To assess this directly and verify the
absence of other problems in our stimuli, we reconstructed the motion
of all dots in each stimulus to compute pattern motion on individual
trials. We confirmed that pattern speed is reduced by the cosine of the
SD of dot directions and conducted experiments with stimuli that
increased dot speed to maintain a constant pattern speed as well as
with stimuli that held dot speed constant over all direction ranges.

Pattern speed corrections did not turn out to be an important factor in
our results.

Data analysis

Eye movements in all trials were inspected prior to analysis. Trials
were not analyzed if they contained blinks, saccades during the time
window of analysis, or a drift in fixation at a speed in excess of 2°/s.
Horizontal and vertical eye position and velocity data were extracted,
and target motion was reconstructed for each trial. Trial data were
aligned on target motion onset.

To analyze the relationship between eye velocity and the stochastic
component of target velocity, we created an array of residuals, or
noise vectors, by subtracting the trial-averaged eye velocity from the
response each single trial. The pursuit response can be described as a
velocity vector ¥(f) = (V,(1), v,(t)), where v indicates an eye velocity
vector and the subscripts H and V label horizontal and vertical. The
residual for the ith trial is given by 8V,(7) = V() — V1)), where (. . .)
denotes an average across responses to the same target motion.
Because the directions of target motion used in our experiments were
within 9° of horizontal, we restricted our analysis of eye direction to
the vertical component of velocity and our analysis of eye speed to the
horizontal component. For all experiments, we also analyzed instan-
taneous eye direction or speed with essentially identical results.

For the temporal noise experiments, we described the temporal
relationship between eye and target velocity by computing the linear
filter, h(7), that best predicts the pursuit response to a given target
motion (Mulligan 2002; Papoulis 1991; Tavassoli and Ringach 2009;
Weiner 1949). The linear filter is defined for continuous signals by:

#(t) = [h(7)s(t — 1)dT 1)

where the stimulus s is a fluctuation in target velocity (6v;), the
predicted response 7 is a fluctuation in eye velocity (6v,), T represents
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the time lag relative to ¢, and the filter 4(7) is the function with units
of 1/time that minimizes the summed squared error between the
predicted and actual responses. We determined h(7) by taking the
inverse Fourier transform of the ratio of the cross spectrum between
stimulus and response to the power spectrum of the stimulus. We
computed the power spectra by taking the Fourier transform of the
cross-correlation function between target and eye movement and the
auto-correlation function of the target motion

dw
h(T) = J%e

The argument of the integral is the transfer function, /2(w), the Fourier
transform of the linear filter that expresses the relationship between
eye and target as a function of frequency. We computed the temporal
filters and transfer functions using a modified version of the Matlab
(Natick, MA) function TFE, which is based on Welch’s averaged
periodogram method. The algorithm divides the input (target velocity
fluctuations) and output (eye velocity fluctuations) into overlapping
sections that are detrended, convolved with a Hanning (square)
window, and padded with zeros to efficiently compute a discrete
Fourier transform. The power spectral densities were computed as the
squared magnitude of the Fourier transform averaged over the over-
lapping sections and over trials. Analysis intervals consisted of either
the entire time duration of the pursuit response from the onset of target
motion to the characteristic time of the first saccade (typically 350—
400 ms), or short time windows (125 or 200 ms) starting from each
time point in the response. To capture the shape of the filter within a
shorter window, we shifted the time window for eye velocity by
50-70 ms relative to the window for target velocity to compensate for
the pursuit latency. We avoided over-fitting by testing predictions
with data that had not been used to generate the filters. We computed
h(7) from multiple random draws of 70% of the recorded trials and
tested the filters against the remaining 30% of the data by comparing
the linear prediction to the actual eye velocity fluctuation on each trial.
The final estimate of the temporal filter was obtained by averaging
across all draws. We also tested the effect of adding a static nonlin-
earity in the form of a velocity-dependent gain term in front of the
integral in Eq. I but found that it did not reduce error.

For spatiotemporal noise experiments, we report mainly the vari-
ance of eye direction and speed variation during the initial ~125 ms
of pursuit, the open-loop interval during which pursuit is driven by
feed-forward sensory signals (Lisberger and Westbrook 1985). In
addition, we performed two additional analyses based on work re-
ported in earlier papers (Osborne et al. 2005, 2007).

In one analysis, we used methods described in Osborne et al. (2007)
to compute behavioral threshold, the smallest difference in target
direction, or speed that could be discriminated from pursuit. In brief,
we used the covariance of eye velocity fluctuations from motion onset
to the time 7, 6v(7) to compute a signal-to-noise ratio (SNR) at time
T. Because SNR scaled with the squared difference in target direc-
tions, SNR(7) = K(T)-A#*, we could define K(T) as SNR(T)/A6?
averaged across all combinations of target directions. We then defined

1/ \/W as a behavioral threshold (A6 = A6,,,..,) Where SNR was
equal to 1, corresponding to 69% correct at time 7. We report the
behavioral threshold near the end of the open-loop interval, 100 ms
after the onset of pursuit.

In a second analysis, we used the methods of Osborne et al. (2005)
to quantify the trial-by-trial variation in pursuit. To do so, we de-
scribed each trial’s variation from the mean eye velocity vector in
terms of three dimensions that accounted for >90% of the trial-by-
trial variance. Briefly, we formed a vector model that described each
trial’s deviation from the mean response in terms of errors in estimat-
ing the direction (66) and speed (6v) of target motion and plotted the
distribution of those errors across trials. We also computed the

Ciun (071(@) 7% (w)) @)
(807 ) 877* (w))
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correlations between direction and speed errors across trials as p =
L amam L s ain
(808v)//(8080) + (6vdv).

RESULTS

To track a moving target with our eyes, the brain must
estimate the target’s motion direction and speed and convert
that estimate to motor commands. Because the responses of
individual sensory neurons are variable, pursuit may form its
estimate of target motion by integrating or averaging both
across time and across neurons that represent the relevant
region of the visual field. In the present experiments, we
analyze responses to stochastic target motion that introduces
fluctuations over time or over space and time, adding noise to
the process of sensory estimation. The use of “temporal noise”
and “‘spatiotemporal noise” stimuli allows us to assay temporal
and spatial integration of the visual motion signals for pursuit
eye movements.

Effect of spatiotemporal stimulus noise on eye
motion variance

Monkeys pursued targets produced by patches of dots in
which the stimulus varied across space and time because the
stochastic component of each dot’s motion was selected inde-
pendently at each update time. For the first 150 ms of stimulus
motion, the dots within the patch moved but the aperture
remained stationary. Still, the local motion in the pattern
provided consistent guidance for pursuit and is a stimulus
configuration that generates eye movements nearly identical to
those evoked when the aperture also moves (Osborne et al.
2007). The effectiveness of the stimulus with the stationary
aperture was expected given the prior demonstration that pur-
suit is driven by local motion within a patch of dots and not by
the motion of the aperture (Priebe et al. 2001).

To enable analysis of how and where in the nervous system
noise in the visual stimulus affects the command signals for
pursuit, we start by confirming that spatiotemporal variation in
target motion increased variation in pursuit (Watamaniuk and
Heinen 1999). In Fig. 2, we compare the effects of targets that
had different levels of spatial noise on the time course of the

A — no noise B
100 — low 03 — Random
80 — med \\‘ ---- Repeated
high 024 \

60
40
20
0_I T T T 1 O_I T T T 1
100 125 150 175 200 100 125 150 175 200
Time from target motion onset (ms)

Monkey P MonkeyJ

0.1 1

Frac.eye speed variance

Eye direction variance (deg?)

FIG. 2. Time course of variance of eye direction for spatio-temporal noise
in direction (A),and fractional variance of eye speed for speed noise (B) for
different levels of spatiotemporal noise in target motion. Each graph plots
measurements as a function of time from the onset of target motion. Black, red,
green, and cyan traces show results from single experiments for targets without
noise and with low, medium, and high levels of noise, corresponding to a 30,
*60, or £90° range of noise for direction, and a 22, 32, or 40°/s range of noise
(n = 3,5,7) for speed. Solid traces show data from trials that used a different
random pattern of dot motion in each trial, and dashed traces from trials that
repeated the same stochastic noise on each trial.
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variance of eye motion during the first 100 ms of pursuit. For
both direction (Fig. 2A) and speed (B), the variation in eye
movement decreased over the first 150 ms of pursuit for all
noise levels. At each time point, the behavioral variance was
higher when there were larger amounts of spatiotemporal noise in
the stimulus. We quantified the effect of different levels of
stimulus noise on pursuit by measuring the variance of eye
direction or speed near the end of the “open-loop” interval, 100
ms after the onset of pursuit, and pooling the results across
multiple experimental sessions using stimuli with a variety of
noise ranges (Fig. 3). We plotted the response variance across
trials as a function of the variance of the average pattern motion
at any moment, given by 05, /N Where 073, is the variance of the
uniform distribution from which dot direction or speed values
were chosen and N is the number of dots in the pattern. In both
monkeys we tested, the variance in pursuit scaled linearly with the
added stimulus noise for both direction and speed.

One feature of the spatiotemporal noise targets is that the
pattern direction and speed varies slightly from stimulus to
stimulus as a function of the numerical seed used to choose the
random component of each dot’s motion. As a result, target
motions are slightly different on each trial. To determine
whether the trial-to-trial difference in pattern motion or the
simultaneous presence of different directions or speeds in-
creased variation in pursuit, we interleaved trials that used the
same seed repeatedly or different, randomized, seeds. In the
“fixed-seed” trials, each dot repeated its individual random
walk on every trial so that there was zero variation in pattern

207 A * Random 20
) Repeated.

2017

motion across trials. The level of behavioral variance was
slightly smaller with the repeated stimuli (Fig. 2, dashed lines)
compared with the random stimuli (solid lines), but the depen-
dence of eye direction and speed variance on target noise level
largely remained throughout the first 150 ms of pursuit. In the
quantitative analysis of Fig. 3, data for the targets that repeated
the same noise sequence (O) lay either within or at the bottom
of the distribution of pursuit variances for the targets that used
different noise sequences in each trial (®). There is no trial-
by-trial difference in the pattern trajectory for experiments that
repeated the same stochastic dot motions, but we plotted those
points at 5., /N on the x axis.

In interpreting our data, one important issue will be the
extent to which the conclusions we draw from analysis of
pursuit also can be applied to perception. Therefore we have
converted our measurements into quantities that are directly
related to perceptual judgments. Using the experimental and
analytical methods sketched in METHODSs and detailed in Os-
borne et al. (2007), we estimated the direction discrimination
thresholds of pursuit for each level of stimulus noise. As
expected given the effects of directional noise of eye velocity
variance, the direction discrimination thresholds increased
steadily as a function of the magnitude of the directional noise
in both monkeys we used for this analysis; Fig. 3, C and F
shows thresholds 100 ms after the onset of pursuit. Further, the
thresholds obtained by repeating the same dot motions in every
trial (Fig. 3C, O) fell within the distribution for those obtained
when the dot motions varied from trial to trial.
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Effect of variance of target speed or direction on the variance of pursuit initiation. A, B, D, and E: @, the variance in pursuit eye direction (A and D)

or eye speed (B and E) as a function of stimulus variance measured in a 15-ms window 100 ms after the onset of pursuit. O, results from trials that repeated the
same stochastic target motion so that the physical visual stimulus was identical on all trials. Each symbol represents a different data set. —, the regression fit
for Eq. 4. Pattern speed and direction variance are defined as the variance of individual dot motion divided by the number of dots in the target. Speed variances
are given as a fraction of base target speed, which was 20°/s. C and F': the direction discrimination threshold for pursuit 100 ms after the onset of pursuit is plotted
as a function of the SD of pattern direction. ® and O, results of experiments with the same stochastic noise on each trial vs. randomized noise. Data from monkey
Y appear in F because its data satisfied the requirements for the analysis of direction threshold that a given experimental day include many repetitions of very
few stimuli. Similar data were obtained from monkey J but using a different experimental design. Fewer repetitions of many stimuli were presented on each day,
so that the threshold analysis would have required combining data across experimental days for each stimulus noise level.
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Interactions of direction and speed noise

To determine the origin of trial-by-trial variation in pursuit,
one important issue will be the extent of generalization of
stimulus noise. Does noise in stimulus direction cause in-
creases only in the variance of pursuit direction or does it also
affect the variance or amplitude of pursuit speed? We ad-
dressed the generalization of variation using methods detailed
in Osborne et al. (2005) to express the deviation in the
open-loop pursuit response on each trial as sensory errors in
estimating the direction, speed, and time of onset of target
motion. This analysis operates under the assumption, validated
by much of our recent work (Medina and Lisberger 2007;
Osborne et al. 2005, 2007; Schoppik et al. 2008), that down-
stream motor circuits loyally follow sensory errors in estimat-
ing target direction and speed. In our earlier work and in the
present data, the three axes of direction, speed, and timing
errors accounted for >93% of the trial-to-trial variation in the
initiation of pursuit.

In both monkeys whose data we analyzed, directional noise
increased speed errors, and speed noise increased directional
errors. Figure 4 shows that the magnitude of the noise in either
the speed or direction of target motion affected the distribu-
tions of both speed and direction errors for pursuit of spatio-
temporal noise targets. In each panel, the distributions broad-
ened as the noise in the visual stimulus was increased from
zero (black) to medium (red) to high (cyan), although the effect
of speed noise on direction errors was relatively small in
monkey P; quantification appears in the legend to Fig. 4. For
the direction noise experiments, we increased the speed of dot

motion to compensate for a drop in pattern speed with noise
level and found no change in the effect of stimulus noise on the
distributions of errors. Even though noise in one modality
affected sensory estimation errors in both modalities, direction
and speed errors were not correlated. We conclude that the
sensory estimates of direction and speed that guide the initia-
tion of pursuit eye movements are independent but that they are
affected by a common source of noise.

Neither directional nor speed noise had much effect on the
mean eye direction (Fig. 5, A and C). The difference between
target and eye direction settled close to zero within the first 25
ms of pursuit for all levels of speed or directional noise. In
contrast, increases in either directional or speed noise de-
creased the mean estimates of target speed for pursuit (Fig. 5,
B and D). The difference between eye and target speed during
the first 150 ms of pursuit decreased quite quickly for noiseless
stimuli, but the rate of decrease became more sluggish as the
amount of direction or speed noise in the stimulus increased.
Unfortunately we do not know whether the effect of noise level
on eye speed during the initiation of pursuit occurs because
stimulus-induced neural noise causes a consistent decrease in
estimates of target speed by population decoding or a decrease
in the strength of visual-motor transmission (Tanaka and Lis-
berger 2001).

Spatial integration: effect of number of dots

Knowledge of how local motion signals are pooled across
the spatial extent of a target should inform an understanding of
how sensory inputs are transformed into motor behavior. We
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FIG. 4. Effect of spatiotemporal noise on errors in estimating that direction and speed of target motion in the initiation of pursuit eye movements. Each panel
plots a distribution of direction (A-D) or speed (E—H) errors based on analysis of the first 125 ms of pursuit, across a large number of repetitions of the same
stimulus. For each monkey, the graphs show the effects of speed and direction noise on both speed and direction errors. Black, red, and cyan curves indicate
distributions for no noise, medium noise, or high noise levels in the stochastic component of target motion. The data are shown as ribbons with thicknesses that
indicate =SD from the means. For direction noise with a range of 0, =60, and =80 deg, 80,,,, was 1.5 = 0.05, 2.2 = 0.08, and 3.5 = 0.1°, respectively, for
monkey P and 1.9 = 0.03, 2.2 *= 0.04, and 2.6 % 0.05° for monkey J; &v,,,s was 9.1 = 0.2, 13 = 0.3, and 17 = 0.3% for monkey P and 10 = 0.2, 15 = 0.2,
and 15 * 0.2% for monkey J. For speed noise with ranges of 0, 27, and 40°/s, év,,,,, was 10 £ 0.2, 13 * 0.3, and 15 = 0.3% for monkey P and 10 £ 0.3, 14 *
0.3, and 16 * 0.3% for monkey J; 86, was 1.4 = 0.1, 1.9 = 0.1, and 1.7 % 0.1° for monkey P and 1.5 = 0.1, 2.1 = 0.03, and 2.8 = 0.1° for monkey J. The
errors for these numbers represent SDs over random draws of half of the data.
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FIG. 5. Effect of spatiotemporal noise on the direction and speed accuracy

of pursuit. A and C: direction. Numbers in key define the half range of direction
values. B and D: speed. Different line types show data for different levels of
speed or direction noise. Each graph plots the average difference between the
target and eye as a function of time from the initiation of pursuit. Top and
bottom panels show data for monkeys P and J.

do not anticipate that averaging across space should be perfect
because it is unlikely that that nervous system measures each
local motion without adding noise or that it pools the measure-
ments perfectly. The goal of the present section was to quantify
the failures of spatial averaging as a means of constraining the
sources and handling of noise in visual motion processing for
pursuit.

We quantified the extent of spatial integration in the visual
motion inputs for pursuit by comparing results from experi-
ments in which spatiotemporal noise targets were composed of
different numbers of dots, ranging from 1 (a spot target) to 200.
For each number of dots (), we varied the range of noise in
the motion of each individual dot (o3,,) and plotted the
variance of eye direction as a function of the variance of the
pattern direction, o7, /N. The slope of the relationship between
eye and pattern direction variance depended strongly on the
number of dots, increasing as the number of dots increased in
very similar ways for the two monkeys (Fig. 6, A and C), and
the dependence on dot number persisted throughout pursuit
initiation. The results looked quite different if we plotted the
variance of eye direction as a function of the variance of single
dot direction (Fig. 6B) instead of as a function of the variance
of pattern direction (A and C). Except for the results for a
single dot comprising a spot target, the relationships in Fig. 6B
were very similar as the number of dots ranged from 10 to 200.

To understand the significance of the effects illustrated in
Fig. 6, A—C, consider expectations if the visual motion input
for pursuit were subject to perfect spatial averaging. Then
pattern direction variance would predict eye direction variance
independent of the number of dots in the target, and the
relationships in Fig. 6, A and C, would superpose for different
numbers of dots: the slopes should be the same for all numbers
of dots. Instead we find that the slopes increase steadily as a
function of the number of dots. At the other extreme, if there
were no spatial averaging at all, then the variance of dot (rather
than pattern) motion would determine behavioral variance: the

2019

relationships in Fig. 6, A and C, should separate as a function of
the number of dots, but the curves would collapse onto a single
relationship when eye direction variance is plotted as a function of
the variance of motion of each individual dot (Fig. 6B).

Figure 6 shows that there is some, but incomplete, spatial
averaging when the patch contains 1-10 dots, but little addi-
tional spatial averaging as more dots are added to the stimulus.
We quantified the efficiency of spatial averaging by fitting the
data for each number of dots with

o,
The = O+ o €)
Sy
where ofyerepresents eye movement variation, oy, is the fixed
level of internal noise in the pursuit system, and aﬁanem is the

noise added by the stimulus. S, quantifies the effective sam-
pling rate for stimuli containing N dots and is given by the
inverse of the slope of the linear fits to data like those shown
in Fig. 5, A and C. If averaging was perfect, then S, should
equal N times §,. We defined the “averaging efficiency” as
Sy/(S,*N), which would be 1 for perfect averaging and 1/N for
no averaging. In both monkeys, for both speed and direction
(Fig. 6D), averaging efficiency is fair for small numbers of
dots, but the data approach 1/N (dashed curve) for textures that
contain >20 dots, indicating that averaging efficiency is quite
poor. We attribute the reduction in the quality of spatial
averaging to the number of dots rather than the dot density
because the colored points showing data for smaller patches
(and therefore higher dot densities) plot along the trajectories
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FIG. 6. Analysis of spatial averaging for pursuit as a function of the number
of moving dots in the targets. A and C: eye direction variance as a function of
pattern direction variance. Different symbols/colors indicate results for targets
that contain different numbers of dots; lines represent regression fits for Eq 3.
B: eye direction variance plotted as a function of the variance of motion of
single dots, using same data as in A. D: effective noise reduction is plotted as
a function of the number of dots for the 2 monkeys. Filled and open black
symbols show data for direction and speed noise in a 7 X 7° patch, red and
purple symbols for direction noise in 3 X 3 and 5 X 5° patches, and triangles
and circles for the 2 monkeys. Numbers in the key for B and D indicate the area
of the stimulus in deg®. Effective noise reduction is defined in the text.
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defined by the data for 7 X 7° patches (black symbols). We
take the poor spatial averaging as evidence that the variation of
pursuit is determined by the noise properties of the central
sensory neurons and the limitations of pooling across those
neurons. We do not think that the relationship between aver-
aging efficiency and number of dots can be attributed to
peculiarities in our visual stimulus, because recording experi-
ments have found rational responses in MT and V1 using the
same stimulus system (e.g., Churchland et al. 2004).

Temporal integration with temporal noise

The preceding section showed that spatial averaging in the
visual input for pursuit is unexpectedly poor. We next asked if
temporal averaging could be an effective mechanism for noise
reduction and whether the locus of temporal averaging is more
likely to be in the sensory or motor arm of the pursuit circuit.

Monkeys pursued visual targets that had a base direction and
speed plus a temporally stochastic element of target motion
either in direction or speed. In temporal noise targets, all dots
moved uniformly and synchronously with a trajectory that
comprised a base direction and speed plus a stochastic element
that was drawn at each update interval (typically 12 ms) from
a zero-mean Gaussian distribution. We present a complete
sequence of results for temporal noise in target direction,
obtained by analyzing vertical eye velocity when the base

L. C. OSBORNE AND S. G. LISBERGER

direction of target motion was close to horizontal. We obtained
very similar results for temporal noise in target speed and
present them only in summary figures.

We analyzed the data by computing the linear temporal filter
that best captured the relationship between target and eye
motion, yielding a description of how target motion at all times
t — At is weighted to drive the eye movement at time ¢. For the
three monkeys for which results are illustrated in Fig. 7A, the
temporal filters had similar shapes, but different amplitudes. In
68 experiments across three monkeys, the filters peaked at lags
of 84*4 (SD) ms, corresponding roughly to the latency of
pursuit in our monkeys. The width of the filters, defined as the
full width at half the maximum amplitude, ranged from 17 to
41 ms across all target conditions with a mean and SD of 25 *
5 ms. The filters were much longer than the impulse response
of the eye velocity differentiator, which was 7.5 ms. The
temporal properties of the filters we obtained in monkeys were
somewhat narrower than those reported by Tavassoli and
Ringach (2009) in humans.

We next showed that the linear filter accounted for a high
percentage of the variance of smooth pursuit eye velocity and
therefore provides a good description of temporal filtering in
the visual motion inputs for pursuit. To provide cross-valida-
tion, we derived filters repeatedly from a randomly chosen
fraction of each dataset and used the filters to predict the
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Linear filters used to define the temporal integration window of visual motion processing for pursuit. A: examples of filters that described the

transformation from target to eye direction for 3 monkeys. The stimulus comprised smooth motion at 20°/s plus a stochastic component of directions drawn from
a Gaussian distribution with a SD of —20° an update interval of 12 ms. Downward arrow indicates a time lag of 84 ms. B: vertical target velocity, actual eye
velocity, and eye velocity predicted from the filter plotted as a function of time from the onset of target motion for a single trial. Meaning of the 3 line types
is given in the key. C: correlation between actual and predicted eye velocity across all trials and times for a single day’s experiment. Black dots plot the data
at each time point and gray symbols represent the average of 1,000 adjacent points. In the inset, the triangles show the distribution of residuals defined as actual
minus predicted velocity, and the curve shows a Gaussian fit. D: the distribution of linear correlation coefficients (R) between actual and predicted eye velocity
across all experiments. Solid and dashed curves show data for temporal noise in direction and speed. E: different line types show filters measured from 125 ms
of data starting 0, 100, or 200 ms after the onset of target motion for temporal direction noise. Data from monkey D. The trace defined by the longest dashes
plots the eye velocity impulse response for single shock stimulation of the vestibular apparatus (from Bronté-Stewart and Lisberger 1994, Fig. 3A).
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average eye velocity on the remaining trials (e.g., Fig. 7B). The
correlation between the predicted and actual averages of eye
velocity at each time point was excellent (Fig. 7C) with a
near-Gaussian distribution of residual errors (Fig. 7C, inset).
Across all experiments, the correlations formed tight distribu-
tions (Fig. 7D) around means of 0.80 = 0.05 (SD, n = 48) for
directional noise and 0.66 = 0.07 (n = 20) for speed noise. On
average, the linear model accounted for 64% of the variance in
pursuit for directional temporal noise and 44% for speed
temporal noise. The general features of Fig. 7 did not depend
strongly on the spatial form of the target; filters had similar
shapes and amplitudes for spot targets versus patches contain-
ing 50 dots, although the temporal filters were ~12 ms broader
for spot targets and accounted for ~10% less variance than did
the filters for patch targets (n = 13).

Three features of our data argue that the width and amplitude of
the temporal filters are consequences of visual processing rather
than of the dynamics of the motor plant or the properties of the
motor system. First, the shape of the temporal filters was
relatively constant over the first several hundred milliseconds
of the pursuit response, showing similar shapes and amplitudes
when based on data in 125-ms time windows that started at the
onset of pursuit and 100 or 200 ms later (Fig. 7E). Because of
the frequent stochastic changes in target direction, data from all
intervals are effectively open loop. Still, eye velocity consis-
tently increased through the three consecutive analysis inter-
vals; extraretinal signals that contribute to pursuit (e.g., New-
some et al. 1985; Tanaka and Lisberger 2001) could have, but
did not, alter the temporal properties of the filter. The larger
amplitudes of the filters in the second and third intervals may
reflect the fact that the motor system was engaged at a higher
level in the final analysis window (Schwartz and Lisberger
1994). Second, the temporal filters obtained from analyzing
pursuit eye movements are much broader than the impulse
response of the eyeball, estimated as the eye velocity response
produced when single shocks are applied in the vestibular
apparatus [Fig. 7E, small amplitude, long-dashed curve (replot-
ted from Bronté-Stewart and Lisberger 1992)]. We verified that
the use of a faster differentiator in their study did not create the
large difference in the time courses illustrated in Fig. 6F. In a
few temporal noise experiments, applying the faster differen-
tiator used in the vestibular studies the temporal filters were
only a few milliseconds narrower than those obtained with the
slower differentiator.

Figure 8 illustrates the third feature of the temporal filters
suggesting that their dynamics arise in sensory processing for
pursuit: their amplitude and width depended on a number of
properties of the stochastic component of the visual stimulus,
but not on the mean target (and eye) speed. For example, when
the SD of the direction noise increased from 10 to 80° (Fig.
8A), the amplitude of the temporal filter decreased to half of its
maximal level (Fig. 8B) and its width shortened by ~8 ms (Fig.
8C). We observed a similar effect on amplitude when we
increased the SD of speed noise with a smaller effect on the
width of the filter. Altering the update interval for the temporal
noise also affected the properties of the optimal filter (Fig. 8D)
but differently. Increases in update interval caused modest
increases in the amplitude of the filter (Fig. 8E) along with
decreases in width (Fig. 8F). The opposite relationships be-
tween filter amplitude and width for changes in the amount of
target noise (Fig. 8, A—C) versus the update interval (D-F) add
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FIG. 8. Effects of experimental conditions on the shape of temporal filters

for pursuit. A: temporal filters for temporal noise drawn from different
distributions of directions given by the numbers in the key. Data from monkey
D. B and C: the peak amplitude of the filters (B) and the full width at
half-amplitude (C) as a function of the SD of the directional noise. D: temporal
filters for temporal noise with different update intervals given by the numbers
in the key. Data from monkey P. E and F: the peak amplitude of the filters (E)
and the full width at half-amplitude (F) as function of the update interval.
G: temporal filters for temporal noise in direction with different base target
speeds given by the numbers in the key. Data from monkey P. H and I: the peak
amplitude of the filters (H) and the full width at half-amplitude (/) as functions
of the base target speed. Different symbols in the graphs show data for
different monkeys. Error bars represent SD and are shown only when they
were available and larger than the symbols. Data from monkey D appear in the
graphs, because he and monkey P participated in the most complete set of
parametric variations for computing pursuit filters.

to the evidence that the filter properties are a property of
sensory processing rather than a fixed feature of the motor
system. In support of a sensory origin for the temporal filters,
we also observed little effect of eye speed on the filter prop-
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erties: decreases in eye speed caused by decreases in base
target speed produced small increases in filter width without
consistent changes in filter amplitude (Fig. 8, G-I). The latter
observation also provides a control showing that increased
stochastic component of target motion caused decreases in
filter amplitude and width directly rather than indirectly
through an undesired decrease in the mean speed of the
monkey’s eye movements in the analysis interval.

Temporal integration with spatiotemporal noise

The analysis of responses to temporal-noise targets implied
that the visual motion input is sampled with a filter having a
duration of ~25 ms. We now obtain independent verification
of the duration of the sampling interval by returning to the eye
movements evoked by spatiotemporal noise targets and vary-
ing both the variance of stimulus speed or direction and the
temporal interval between updates of the stochastic motion.

When the update interval was short, the pattern direction
variance was effectively averaged away, and on the effect of
pattern direction variance on eye direction variance was weak
(Fig. 9A, O). As the update interval increased, so did the
magnitude of the effect of pattern direction variance on eye
direction variance. Figure 9B shows a smaller effect of update
interval in the same direction for speed noise. To move from
the measurements in Fig. 8 to estimates of the duration of the
temporal sampling interval in the visual motion inputs for
pursuit, we return to a minor variant of Eq. 3 in which noise
within by the physical stimulus adds to the system’s internal
noise level

Uza ern
Ooye = O + % )

where oﬁye represents eye movement variation, oy, is the fixed
level of internal noise in the pursuit system, and ozpanem is the

noise added by the stimulus. In Eq. 4, S is the inverse of the slope
of the regression line and characterizes the number of independent
samples taken across time in visual motion processing. Lower
slopes indicate that more samples were taken resulting in greater
noise reduction through temporal averaging.

When we applied Egq. 4 to the data from Fig. 3, A, B, D, and
E, we obtained values of o . of 2 and 1.9° for internal noise in
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pursuit direction in monkeys P and J, respectively, and 2.2 and
2.4°/s (0.11 and 0.12 times target speed) for internal speed
noise. We estimated the temporal integration window as the
product of effective number of samples (S) in Eg. 4 and the
duration of the update interval between changes in the stochas-
tic component of target motion. The direction noise data (Fig.
3, A and D) imply temporal integration windows of 29 and 20
ms for the two monkeys in good agreement with the widths of
the temporal filters derived in Fig. 7. The temporal integration
windows for speed noise (Fig. 3, B and E) were 21 ms for the
two monkeys, again in reasonable agreement with the widths
of the temporal filters derived for temporal noise stimuli.

Finally, we returned to the effects of varying the temporal
update interval of the stimulus (Fig. 9, A and B) and plotted the
effective number of samples (S) as a function of the update
interval (Fig. 9C). Pursuit behaved as if only one sample was
taken when the update interval was ~25 ms for both direction
and speed noise in both monkeys tested, in agreement with the
width of the temporal filters for direction perturbations pre-
sented in Figs. 7 and 8 and the analysis in the prior paragraph
for the data in Fig. 3. The data for direction noise at all update
intervals agreed well with interpreting S in Eq. 4 as the number
of independent samples in time, formalized by the dashed
curve in Fig. 9C, which plots the temporal integration window
of pursuit divided by the update interval, At /A, as a function
of update interval, under the assumption that Az, = 25.
However, the data for speed noise consistently indicated that
pursuit used small numbers of samples at all update intervals
and in that sense disagreed with the predictions of Eq. 4. We do
not have any explanation for these minor differences in the
responses to directional and speed noise, but we note that
differences between effects of speed and directional noise also
appear in the data of Watamaniuk and Duchon (1992). They
found very little impact of spatiotemporal speed noise on
performance in perceptual discrimination experiments. We
were able to obtain consistent effects in our monkey subjects
by using a wider range of speeds.

DISCUSSION

The smooth pursuit system transforms visual motion signals
into commands for eye movement with the goal of eliminating
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FIG. 9. Analysis of temporal averaging for pursuit based on varying the update interval for the stochastic component of spatiotemporal noise targets. A: effect
of variance of pattern direction on eye direction variance. B: effect of pattern speed variance on eye speed variance. Different symbols show results for different
update intervals and lines are regression fits of Eg. 4 to the relationship between eye and pattern variance for each individual update interval. C: effective number
of samples, defined as the inverse of the slope of the regression lines from Eg. 4, plotted as a function of update interval. ® and O and a and A show data for
direction and speed, respectively; O and A and ® and a data for monkeys P and J, respectively. - - -, the prediction of Eq. 4 under the assumption that the temporal
integration time is 25 ms, meaning that a single sample would be taken when the update interval was 25 ms.
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retinal image motion. It does so quite effectively even though
noise-free stimuli allow considerable trial-to-trial variation in
the responses of neurons in visual motion pathways. The eye
velocity of smooth pursuit also varies from trial to trial, but the
magnitude of the variation is relatively small. Importantly,
little of the variation in pursuit is “noise” but instead can be
understood in terms of sensory errors in estimating the direc-
tion, speed, or time of onset of target motion (Osborne et al.
2005). To produce a behavior that has relatively small variation
in the face of neural responses that have considerable variation,
pursuit must integrate the noisy responses of visual motion
neurons, pooling visual signals across both space and time.

Temporal averaging for pursuit

Temporal integration of visual information is well known for
perceptual decisions, where discriminability of motion signals
improves over viewing times of 100-200 ms, longer if the
signal-to-noise ratio of the stimulus is low (e.g., de Bruyn and
Orban 1988; Gold and Shadlen 2003; Morgan et al. 1983;
Snowden and Braddick 1991; Watamaniuk and Sekuler 1992;
Watamaniuk et al. 1989). For pursuit, only 100 ms of visual
motion occurs before the onset of pursuit, and the response to
that brief motion tracks the target motion accurately on average
and quite precisely. Further, directional and speed precision
evolve almost to their asymptotic limits within the first 100 ms
of pursuit (Osborne et al. 2007). Therefore pursuit, like per-
ception, must extract the parameters of object motion from a
noisy neural background over a short time frame.

Two features of the eye velocity evoked by temporal noise
in target motion imply that pursuit integrates across a time
window of ~25 ms. First, temporal filters that were ~25 ms
wide at half-amplitude provided the best description of the
transformation from temporal noise target motion to eye ve-
locity. Second, pursuit behaved as if taking a single sample of
the visual stimulus when the update interval between changes
in the stochastic component of motion was ~25 ms; shorter
update intervals allowed more samples. Converting the tempo-
ral filters to the frequency domain implies that pursuit reduces
noise by suppressing visual inputs at frequencies >10 Hz. This
seems like a well-planned compromise: pursuit integrates
across a long enough temporal window to lend some noise
immunity, but its frequency response still is well-matched to
the temporal-frequency spectrum of natural moving images
(Dong and Atick 1995).

Several lines of evidence suggest that temporal averaging for
pursuit occurs during sensory processing and that the duration
and shape of the temporal filters for pursuit arise in the sensory
system. First, the duration of the filters that transformed visual
motion into eye motion is much longer than the impulse
response of the oculomotor plant as assessed by single shock
stimulation of the vestibular apparatus. Therefore we suggest
that the shape of the temporal filters for pursuit arises in neural
rather than mechanical processing. Second, the amplitude and
width of the filters depended on the visual properties of the
stimulus rather than on the eye movement. Decreases in filter
amplitude with increased direction or speed range in the visual
stimulus could be caused by a broadly tuned divisive normal-
ization mechanism (e.g., Heeger 1993) that is derived from an
increasingly broad population of neurons. Degrading the visual
stimulus also could decrease filter amplitude by decreasing the
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gain of visual-motor transmission downstream from MT (Gol-
dreich et al. 1992; Tanaka and Lisberger 2001). However,
altering the gain of visual-motor transmission directly by
changing target speed did not have consistent effects on filter
amplitude.

If, as we propose, the temporal features of pursuit filters
reside in sensory processing, then our data imply all subse-
quent filtering has faster temporal properties than does sensory
processing. Therefore pursuit is driven by samples of visual
motion signals taken in windows of duration ~25 ms. Given
that the average MT neuron emits ~11.5 spikes in the first 150
ms of a preferred visual motion stimulus (Huang and Lisberger
2009; Osborne et al. 2004), integration across 25 ms means that
pursuit is sampling on average 1 to 2 spikes at a time from each
neuron. Thus motion integration must operate on the basis of
rather sparse spike trains from each individual neuron. Com-
bining across many neurons would allow the system to count a
substantial number of spikes within the integration interval, but
the small number of spikes for each neuron in a given integra-
tion interval would allow alternate codes based on combina-
tions of spikes and silence across neurons with similar tuning
properties (Osborne et al. 2008; Reich et al. 2001).

Changes in the response characteristics of neurons in the
retina, LGN, and V1 have been shown to depend on the
variance and temporal correlation structure of stimuli. There-
fore processing in these structures may provide a neural basis
for the behavioral filters we observed (e.g., Chander and
Chichilnisky 2001; Clifford et al. 2007; Hamamoto et al. 1994;
Kim and Rieke 2001; Lesica et al. 2007; Schwartz and Simo-
ncelli 2001; Sharpee et al. 2006; Smirnakis et al. 1997; Victor
1987; Wark et al. 2009). Finally, the width of the filters we
obtained for pursuit agree well with the narrowest filters
obtained in MT neurons by Borghuis et al. (2003) using stimuli
quite similar to ours, and are slightly shorter than those ob-
tained by Bair and Movshon (2004) by triggering averages of
a stochastic stimulus on the spikes of MT neurons. We con-
clude that a 25-ms filter width likely is already evident in the
responses of MT neurons and sets the duration of temporal
integration for pursuit.

Spatial averaging for pursuit

We think of spatial averaging as a way to combine stimuli
that appear in different places in the visual field, but our data
imply that spatial averaging of the visual input for pursuit eye
movements is quite inefficient. Eye direction and speed vari-
ances decrease as a function of the number of moving elements
in the stimulus but less than expected from motion averaging.
For stimuli that contain only 10 dots, the efficiency of spatial
averaging is half of the theoretical prediction that eye motion
variance should decrease in proportion to the number of dots.
For stimuli with =50 dots, the efficiency of spatial averaging
is only 10-20% of the theoretical prediction.

At some level, we must think of noise reduction in sensory
processing as a consequence of integrating across a population
of noisy neural responses rather than across the physical
stimulus itself. A number of our central observations under-
score the advantages of thinking in terms of noise reduction as
part of population decoding, where the noise across the popu-
lation responses varies as a function of, but not in proportion
to, the noise present in the stimulus. First, pursuit variance is
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nonzero even for nominally noise-free stimuli (Osborne et al.
2005, 2007), a fact that can be explained only by neural noise
(Huang and Lisberger 2009). Second, spatiotemporal noise in
either speed or direction affects sensory estimation in both.
Separable effects would be expected if pursuit were averaging
across the physical stimulus, whereas shared effects would be
expected if target speed and direction were estimated from a
neural population response that acts as a shared noise source,
for example MT. Third, pursuit variation increases with the
range of dot motions in the target even when each repetition of
a given level of stimulus noise contains the exact same dot
motions. If pursuit was estimating the direction and speed of
each dot and averaging across the many dots in the stimulus,
then we would not expect any increment above the baseline
level of pursuit variation. Instead, it seems that the presence of
noise in the stimulus increases the noise in the neural popula-
tion response just by its existence. Finally, the variance of
pursuit does not scale in inverse proportion to the number of
dots in the stimulus as expected if pursuit were averaging
across the dot motions in the stimulus.

Correlated noise in the responses of MT neurons (Bair et al.
2001; Cohen and Newsome 2008; Zohary et al. 1994) can
explain the magnitude of variation in pursuit direction and
speed (Huang and Lisberger 2009). We also know from pre-
liminary studies (Yang and Lisberger 2009) that spatiotempo-
ral noise alters the direction tuning of individual MT neurons.
We suspect that spatiotemporal noise has its biggest effect on
the neuron-by-neuron variation in firing across the MT popu-
lation rather than on the trial-by-trial variation of the individual
neurons. To provide more quantitative interpretations, we will
need to document a large sample of MT responses (and
neuron-neuron correlations) for both noise-free and spatiotem-
poral noise targets. Only then will we be able to create and
decode a realistic model MT population response. Neural data
also will allow us to determine whether the properties of spatial
integration expressed in the pursuit response are related to the
saturation of the responses of MT neurons at very low numbers
of dots (Snowden et al. 1992).

Common spatial integration mechanisms for pursuit
and perception

Watamaniuk and Heinen (1999) used a spatiotemporal noise
stimulus like ours to show parallel degradation of direction
precision for pursuit and perception according to the model
described by Eq. 3. Their work implies that noise in the sensory
stimulus creates a source of neural variation that is shared by
perception and behavior. Our research uses measures of pursuit
eye movement only. However, the advantages of pursuit as a
behavioral endpoint have allowed us to go further in our
understanding of temporal and spatial integration for motion
estimation. We have been able to define the temporal window
of motion integration for pursuit and strengthen the case that
temporal integration for pursuit is localized in sensory process-
ing. Further, we have focused attention on explanations of
pursuit variation in terms of noise in the sensory representation
of motion rather than from the motor system or the physical
properties of the sensory stimulus itself. We think that our
conclusions from measures of pursuit variation also will apply
to visual motion integration for perception. Because of the
similarities of direction and speed thresholds for pursuit and

L. C. OSBORNE AND S. G. LISBERGER

perception for noise-free and noisy stimuli, we expect that
explanations of the neural basis of sensory estimation for
perception will draw heavily from our ultimate understanding
of the motor effects revealed here.
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